U.S. - Russia Energy Working Group

Russian Technologies

Russian Technologies

- Nuclear
- Battery and Fuel Cell Technology
- Fossil Fuel Technologies
- Other

Nuclear

- Large Scale Simplified boiling Water Reactor
- Pebble Bed Light Water Reactor with Micro-Fuel Elements
- Radkowsky Thorium Fuel (RTF)
 Concept.

Battery and Fuel Cell Technology

- New Materials development for fuel cells.
- Photon Battery
- Concentrator Modules Based on II-V Multijunction Solar Cells and Composite Fresnel Lenses
- Fuel Cell Component and System Development
- Development of Ultra-Lightweight Amorphous Silicon Alloy Photo-voltaics for Space Applications
- Development of PV Gas Recycling Technology for Solar Cell Production
- Development of Next Generation Building-Integrated Photo-voltaic Modules
- Ovonic Nickel Metal-Hydride (NiMH) Battery Technology

- Outside Rarefaction Shock Wave Cutter for Oil-Gas Platform Removal
- Retrofit and Demonstration of a Small Natural Gas Vehicle Fleet in a Nuclear City
- Development of Numerical Simulator for Improved Oil and Gas Production in Weak Reservoir Formations
- Radar Mapping of Geologic Structures from Drills
- Radar Mapping of Fractures in Hydrocarbon Reservoirs
- Drilling, Imaging and Coal Bed Methane Production Ahead of Mining

Other

- Low-Maintenance Wind Power System
- Catalytic Process for the Conversion of Scrap Tires to Reusable Rubber

Examples of Russian Technologies Selected from the Previous List

Ovonic Nickel Metal-Hydride (NiMH) Battery Technology

- Joint U.S.-Russian venture established production operations in Glazov
 - Russian metal alloy melting chambers produce ingots for negative electrodes in proprietary Ovonic NiMH batteries
 - Process improvements reduced capital equipment/overall manufacturing costs
 - Facility now producing test materials for possible use in batteries for wide range of applications, including hybrid electric vehicles and electric scooters
- Ovonic NiMH technology in widespread commercial use
 - Licensed manufacturers now produce >900 million NiMH batteries for laptops, cell phones, videocams
 - Russian-produced materials will help expand market

Projected/Current Sales: \$15 million/yr in 5 yrs (50% to Russians) Commercialization: Mid-2003

Energy Conversion Devices, Inc. Troy, MI

Sovlux Battery Chepetsky Mechanical Plant Glazov, Russia

Oak Ridge National Laboratory
Oak Ridge, TN

Direct Carbonate Fuel Cell (DFC™)

 DFC[™] promises clean, efficient, lowcost energy for new millennium

- No noble metals used in fabrication processes
- Simplified manufacture, assembly, and operation
- Multi-fuel capabilities
- High quality waste heat cogeneration
- Ultra high efficiency fuel cell/turbine hybrid
- New coating process and alloy compositions replace expensive nickel-clad stainless steel bipolar plates; metal/ceramic composite material enhances anode performance
- Reduced cost will accelerate worldwide introduction of efficient DEC™
- Development of Russian capacity for DFC[™] component production will
 - boost Russian civilian economy
 - help meet global need for environmentallyfriendly energy source

Commercialization:

Field Trials since 2001

FuelCell Energy, Inc.

Sarov, Russia

Argonne National Laboratory Argonne, IL

Low-Maintenance Wind Power System

- Multi-billion dollar wind power generation industry growing in popularity
 - Need to reduce CO2 emissions
 - Need to generate electricity costeffectively in remote locations for ranchers, farmers, villages, deep-well survival
- Small (3-70 kW) wind power system uses novel Vertical Axis Wind Turbine (VAWT) design
- VAWT offers advantages over conventional Horizontal Axis Wind Turbine
 - Lower maintenance costs
 - Increased durability and reliability
 - More economically viable in remote locations

Projected/Current Sales: \$80 Million

Commercialization: 2004-2005

Empire Magnetics Inc.

State Rocket Center, Makeyev Design Bureau Miass, Russia

National Laboratory
Berkeley, CA

Empire Magnetics, Inc. Rohnert Park, CA

Rarefaction Shock Wave (RSW) Cutter for Offshore Oil-Gas Platform Removal

- Offshore oil/gas installations and sub-sea equipment must be removed when production ceases
 - Platforms stand in waters 10-3,000 feet deep
 - 50-80 lbs. of explosives needed for removal
 - Efficient techniques using less explosives only cut pipes up to 2 inches thick
- New Russian technology uses interaction of explosively-generated RSW to cut thickwalled cylindrical cross-section pipes
- Technique requires only 9-15 lbs, of explosives
- RSW cutter able to sever pipes several inches thick
- RSW minimizes effects of underwater blasts on marine life
- U.S. partner will pursue offshore commercial market, starting with Gulf of Mexico and North Sea operations; Russian partner will develop other sizes/variants of RSW cutters

Projected/Current Sales: \$100K in year 3; \$1.3 million in year 5 Commercialization: 2003

Jet Research Center Division Hallburton Energy Services, Inc. Alvarado, TX Russian Federal Nuclear Center (Azzamas-16) Sarov, Russia Lowrence Livermore National Laboratory Livermore, CA

Metal Interconnect Materials for Solid Oxide Fuel Cells (SOFC)

- Bipolar plates in planar SOFC stacks separate air and fuel streams, electrically connect adjacent cells
 - Metallic separator plates are desirable for reduced cost, simpler pressure seal design
 - Metal separators must be oxidation resistant and/or oxide scale must be thin and electronically conducting
- Russian experts in alloy design/ development will examine 2 new metal interconnect coatings:
 - Application of spinel to stainless steel
 - Use of custom-made homogenous materials
- Project will cover initial screens, pilot lot manufacturing runs
- Successful post-project commercial stack tests will help meet growing consumer demand for next generation fuel cells

Projected/Current Sales: TBD

Commercialization: 2004

Arzamas-16 Sarov, Russia

Argonne National Laboratory Argonne, IL

Retrofit and Demonstration of a Small Natural Gas Vehicle Fleet in a Nuclear City

- Air quality and environmental concerns, combined with limited supply and rising prices of petroleum, create growing global market demand for alternative fuels
- Compressed natural gas (CNG) costs less than half of petroleum/gasoline on per-unit-energy basis.
- Dramatic technological advances allow CNG to burn cleanly in internal combustion engines.
- Trucks equipped with special tanks can reach and tap natural gas reserves including stranded gas—more economically than expensive pipelines.
- CNG is source for 2nd tier industrial, commercial and residential markets.

Projected/Current Sales: \$60 million per year (4 yrs post-project) Commercialization: 2003

NEOgas, Ltd. Houston, TX Arzamas-16 (MNIEF) Sarov, Russia National Renewable Energy Laboratory Golden, CO

Radar Mapping of Geologic Structures from Drills

 Mining of smaller/deeper deposits requires advance drilling to determine geologic structure and assess conditions

- Borehole radar is prototype technology for mapping anomalous geologic structures.
- Borehole radar unit is integrated into drill heads
 - Drillstring contains radio data transmission link
 - radar unit generates its own power
 - radar unit capable of withstanding severe environments
- Technology eliminates costly need to drill to floor and roof of boundary, with significant savings in electrical energy costs
- Possible urban area use for trenchless excavation to install/replace utilities

Projected/Current Sales: \$65 million in 5 years Commercialization: Started

Horizon, Inc.

Institute for Measuring Systems Research (NIIS) Nizhny Novgorod, Russia

Kansas City, Missouri

Raton, New Mexico

Radar Mapping of Fractures in Hydrocarbon Reservoirs

- Radar antenna array and 400-kHz to 4-MHz band enables signals to propagate to distances beyond 10 meters from wellbore
- Radar data processed in high-resolution tomography algorithm
- Maps fractures and identifies fluid type
- High-resultion tomography software
- Imaging enables smart fracking and sealing to increase hydrocarbon recovery and oil/water ratio

Projected/Current Sales: \$2 billion per year

Commercialization: Started

Horizon, Inc.

Institute for Measuring Systems Research (NIIS) Nizhny Novgorod, Russia

Sandia National Laboratories
Albuquerque, New Mexico

Raton, New Mexico

Drilling, Imaging and Coal Bed Methane Production Ahead of Mining

- · Imaging geologic anomalies
 - Faulta
 - Dikes and sills
 - Paleochannels
 - Altered coal
 - Old workings
 - Roof/floor rock type
- · Coal bed methane
 - Determine flow interference
 - Determine seam height
 - Reduce CBM water
 - Reduce production cost
- · Coal mining
 - De-gas seam ahead of mining
 - Reduced ventilation cost
 - Mine planning with geologic information
- Financial
 - Verification of financial projection
 - Low risk and financing cost

Projected/Current Sales: \$2 billion per year Commercialization: Started

Raton, New Mexico

Sedakov Institute for Measurement Systems Research (NITS) Nizhny Novgorod, Russia

Kansas City, MO

Radkowsky Thorium Fuel (RTF)

- RTF is a new fuel for the world's existing light water reactors.
- Nuclear power plants using RTF will be unable to produce nuclear weapons-usable plutonium in their spent fuel.
- The costs of RTF are projected to be lower than current fuels.
- The "back end" benefits of RTF include significantly reduced volume and weight of spent fuel, and reductions in high-level nuclear wastes.
- A business partnership that is expected to lead to a major export product from Russia.

Projected/Current Sales: In excess of \$100 million per year Commercialization: 2006

Kurchatov Institute of Atomic Energy Moscow, Russia

Brookheven National Laboratory
Upton, NY